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limited by two factors under ambient CO2 concentrations: leaf biochemistry (i.e., the carboxylation capacity of 
ribulose-1,5-bisphosphate carboxylase/oxygenase; Rubisco) and/or CO2 supplementation18. In C3 plants, a large 
amount of total leaf N exists in chloroplasts, mainly forming photosynthetic proteins in the stroma. As a key 
enzyme in photosynthesis, Rubisco is exceptionally abundant, accounting for approximately half of total leaf N. 
Because of the large investment of leaf N in Rubisco and electron transport proteins (the latter with approximately 
7% of total leaf N), a strong and positive correlation between A and leaf N content per leaf area is frequently 
observed17. �erefore, increasing the chloroplast volume per unit leaf area, and hence increasing the leaf N con-
tent, would potentially increase the rate of photosynthesis.

Under a given environmental condition (i.e. temperature and light), the carboxylation to oxygenation ratio 
of RuBP is determined by the CO2 concentration in the chloroplast (Cc)19–23. CO2 molecules di�use from the 
atmosphere into chloroplasts by overcoming a series of di�usion resistances, including the boundary layer, sto-
mata and mesophyll resistances, which results in a remarkable drawdown in Cc compared to the atmospheric CO2 
concentration. �e di�usion conductances of stomata and mesophyll tissues are de�ned as stomatal conductance 
(gs) and gm, respectively. In the last 10–15 years, considerable e�orts have been focused on the chloroplast features 
that determine gm. �ese have shown that there is a tight relationship between the area of chloroplast surface 
exposed to intercellular airspaces (Sc) and gm22, 24–26. In mesophyll cells, chloroplasts are usually located next to 
the cytoplasmic membrane adjacent to intercellular air spaces, which was suggested to decrease resistance to CO2 
di�usion 25. Smaller chloroplasts are more �exible in movement than larger chloroplasts, especially under variable 
environmental conditions27, 28, which was suggested as the explanation why plants usually contain many small 
chloroplasts rather than a few large ones.

Although the important role of chloroplast number as well as chloroplast shape in gm decreasing was suggested 
in the study of Weise et al.16, the reasons of low A and gm in arc mutants are still unclear. As described above, 
both leaf structural properties, which were not quanti�ed in their study, play the key role in determining A. In 
the present study, we used two Arabidopsis arc mutants and the corresponding wild-type plants to investigate the 
e�ects of chloroplast size and number on photosynthesis. Our objective was to evaluate whether a small number 
of enlarged chloroplasts is less bene�cial to photosynthesis than a large population of small chloroplasts using leaf 
structural and biochemical analysis and 1-D mesophyll conductance model.
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size and number on plant performance and photosynthesis, the photosynthetic characteristics of two arc mutants 
and their wild-types (Table�1) were analysed. Both mutants exhibited lower A, transpiration (E) and CO2 di�u-
sion conductance than their wild-types, and consequently reduced biomass accumulation (Table�2 and Fig.�1). 
Compared with Columbia (Col) and Wassilewskija (Ws) wild-type plants, gs was reduced by 42.4% and 61.0% in 
their respective mutants (arc 12 and arc 8) (Table�2). �e intercellular CO2 concentration (Ci) was similar in both 
arc 12 and Col-WT, although it was lower in arc 8 than in Ws-WT. Furthermore, gm was determined using two 
independent methods and showed a good correlation in both (Table�2). Similar to gs, the gm in the mutants was 
signi�cantly lower than that in the wild-type plants, resulting in a greater drawdown of Cc from Ci. Day respira-
tion (Rd) and CO2 compensation point in the absence of respiration (Γ*) were similar in the mutants and their 
wild-types.

A in the mutants was generally lower than that in their wild-types across the supplied CO2 concentrations 
(Fig.�2a). Interestingly, the maximal A from the A/Ci curves (Amax) in arc 8 was comparable with that in Ws-WT, 
although Amax was lower in arc 12 than in Col-WT. �e mutants and their respective wild-types generally showed 
similar A/Cc response curves; Col-WT and arc12 showed a higher A than Ws-WT and arc8 at a given Cc (Fig.�2b). 
�e maximum velocity of carboxylation (Vcmax) and maximum electron transport (Jcmax), calculated from the 
A/Ci curves, were similar in the mutants and their wild-types (Table�2). Moreover, the light-saturated A and light 
saturation point determined from the light response curves were signi�cantly lower in the mutants and their 
wild-types (Fig.�2c).

Di�erences in plant growth and photosynthetic parameters were also observed between accessions. �e bio-
mass, A, gt, gm, Vcmax, Jcmax, Amax and electron transport rate (J) of Col-WT were higher than those of Ws-WT. 
Conversely, gs, Ci and Cc were lower in Col-WT than in Ws-WT (Table�2, Figs�1 and 3a). �e quantitative limita-
tion analysis (Fig.�4) showed that the decreases of A in two mutants were mostly due to a mesophyll conductance 
limitation (Lm, 29.9% in arc 12; and 49.8% in arc 8), followed by a stomatal conductance limitation (Ls, 18.5% in 
arc 12; and 10.9% in arc 8), while the biochemical limitation (Lb, 0.17% in arc 12; and 0.51% in arc 8) was of minor 
importance in both mutants.

���‡�ƒ�ˆ�������…�‘�•�–�‡�•�–�á���…�Š�Ž�‘�”�‘�’�Š�›�Ž�Ž���…�‘�•�–�‡�•�–�á���ƒ�•�†�����—�„�‹�•�…�‘���…�‘�•�–�‡�•�–�ä���e leaf N and Rubisco content per 
leaf area were signi�cantly higher in Col-WT than in arc 12, but there were no signi�cant di�erences between 

Symbol Ecotype Accessions Chloroplast Number (/Cell)

Col-WT Col-0 N60000 100

arc 12 Col-0 N16472 1–2

Ws-WT Ws N1601 83

arc 8 Ws N284 45

Table 1. Details of the materials used in this study. �e chloroplast numbers were obtained from the European 
Arabidopsis Stock Centre (NASC, http://arabidopsis.info/) with the accession number.
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important factors limiting gm. However, there were no signi�cant di�erence of those traits among wild types and 
mutants. By modeling the in�uences of Tstr, Tcyt and Tcw on modeling gm with a variable Sc (Fig.�6), we found that 
Sc can strongly in�uence gm. A slight decrease of Sc leads a signi�cant reduce in gm in leaves with a relative thin cell 
wall (i.e. less than 0.2 µm) or chloroplast stroma (i.e. less than 2 µm) like the A. thaliana leaves (Table�4) estimated 
here. �e Sc of the mutants was signi�cantly lower than that in their wild-types, which resulted in decreased gm in 
the mutants. Otherwise, the distance between cell membrane and chloroplasts (Tcyt) was increased signi�cantly in 
the mutants (Table�4 and Fig.�3), which also potentially increased the CO2 di�usion pathway and then decreased 
the gm (Fig.�6c). �erefore, our results highlight the signi�cant e�ects of chloroplast size and number on Tcyt and 
Sc and, consequently, gm and A.

���‹�¡�‡�”�‡�•�…�‡�•���‹�•��A/C�‹ and A/Cc���…�—�”�˜�‡�•�ä��A/Ci curves are frequently used to analyse photosynthetic limitations, 
including Rubisco carboxylation capacity at low Ci values and RuBP regeneration rate as well as the utilization 
of photosynthates at high Ci values33. In the present study, the A/Ci curves of the mutants and their wild-types 
were di�erent, such that the mutants had reduced A compared to their wild-types (Fig.�2a). A was generally not 
signi�cantly improved in the two wild-types when Ci > 600 μmol mol−1; in contrast, it was signi�cantly higher 
in the two mutants. �is suggested that the CO2 saturation points in the mutants were higher than those in their 
wild-types. In arc 12, A gradually increased across the supplied CO2 concentrations, and CO2 was not saturated 
at its highest Ci value of approximately 800 μmol mol−1.

Figure 4. (a) quantitative relative limitations of stomatal conductance (ls), mesophyll conductance (lm) and 
biochemical factors (lb) and (b) the contributions of stomatal conductance (Ls), mesophyll conductance 
(Lm) and biochemical factors (Lb) to relative changes in light-saturated photosynthetic rate (A) in mutants 
(dA/A = (Awild-type − Aarc)/Awild-type). Where the Awild-type and Aarc are the A in wild-types and mutants, 
respectively.

Col-WT arc 12 Ws-WT arc8

Leaf N content (g m−2) 0.847 ± 0.021 a 0.762 ± 0.047 b 0.604 ± 0.036 c 0.613 ± 0.006 c

Chl a + b (g m−2) 0.239 ± 0.004 a 0.233 ± 0.016 a 0.213 ± 0.033 b 0.225 ± 0.008 b

Chl a/b 2.09 ± 0.11 a 2.04 ± 0.05 a 1.57 ± 0.05 b 1.63 ± 0.14 b

Rubisco (g m−2) 0.510 ± 0.027 a 0.446 ± 0.052 b 0.244 ± 0.038 c 0.212 ± 0.022 c

Protein (g m−2) 0.80 ± 0.02 0.80 ± 0.03 0.76 ± 0.04 0.74 ± 0.11

Table 3. Leaf chemical features �e values shown are the mean ± SD of three replicates. �e means were 
compared with a least signi�cant di�erence (LSD) test; values followed by the same letter are not signi�cantly 
di�erent (P < 0.05).
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As suggested earlier, restricted CO2 di�usion conductance accounted for the low A in the mutants. If this is the 
case, the A/Cc curves would be similar in the mutants and their wild-types, which was indeed observed in the pres-
ent study (Fig.�2b). Moreover, A in the mutants gradually increased with increasing CO2 concentrations and reached 
6.55 μmol m−2 s−1 in arc 8 which was similar to the 6.66 μmol m−2 s−1 in its wild-type (Fig.�2a). Because CO2 was 
not saturated for arc 12, Amax in arc 12 (7.56 μmol m−2 s−1) was lower than that in Col-WT (11.72 μmol m−2 s−1).  
�erefore, the results illustrated by the A/Ci and A/Cc curves also demonstrate that chloroplast size and number 
can signi�cantly a�ect A through by CO2 di�usion conductance.

���•�’�Ž�‹�…�ƒ�–�‹�‘�•�•�ä���e question of why photosynthetic mesophyll cells in higher plants contain numerous small 
chloroplasts rather than one or a few larger ones, has been asked and pursued by many researchers27, 34. It has 

Col-WT arc 12 Ws-WT arc 8

LMA (g m−2) 11.38 ± 0.73 b 11.85 ± 0.26 b 14.47 ± 0.49 a 12.93 ± 0.80 b

Tleaf (μm) 80.1 ± 5.6 79.6 ± 11.3 81.1 ± 7.2 75.9 ± 4.7

Tmes (μm) 68.4 ± 3.4 67.8 ± 6.3 71.3 ± 7.6 67.6 ± 5.1

Tcell wall (μm) 0.174 ± 0.006 b 0.181 ± 0.004 b 0.193 ± 0.002 a 0.199 ± 0.007 a

Sm (m2 m−2) 9.02 ± 0.77 a 8.52 ± 0.60 a 7.77 ± 0.54 b 7.38 ± 0.61 b

Sc (m2 m−2) 8.17 ± 0.54 a 5.26 ± 0.60 c 6.31 ± 0.39 b 5.48 ± 0.62 c

Tcyt (μm) 0.100 ± 0.003 b 0.121 ± 0.008 a 0.097 ± 0.009 b 0.123 ± 0.007 a

Tstr (μm) 1.98 ± 0.31 2.13 ± 0.40 1.81 ± 0.31 2.22 ± 0.22

Chloroplast size (μm2) 14.6 ± 2.1 c 198.2 ± 4.7 a 15.1 ± 2.3 c 34.4 ± 3.3 b

Pchl (m2 m−2 mesophyll) 44.3 ± 5.1 a 41.9 ± 2.8 a 31.8 ± 2.9 b 30.6 ± 4.5 b

fias (%) 23.4 ± 3.4 19.9 ± 2.9 22.7 ± 1.7 24.6 ± 3.3

Table 4. Leaf anatomical characteristics. �e values shown are the mean ± SD of three replicates. �e means were 
compared with a least signi�cant di�erence (LSD) test; values followed by the same letter are not signi�cantly 
di�erent (P < 0.05). LMA, leaf mass per leaf area; Tleaf, leaf thickness; Tmes, mesophyll thickness; Tcell wall, cell wall 
thickness; Sm, mesophyll cell surface area face to intercellular air space per leaf area; Sc, chloroplast surface area 
face to intercellular air space per leaf area; Tcyt, cytoplasm thickness; Tstr, chloroplast stroma thickness; Pchl, 
chloroplast planar area per planar cell area; fias, mesophyll tissue occupied by the intercellular air spaces.

Figure 5. Limitation of mesophyll conductance due to anatomical constraints. (a) Share of the overall gm 
limitation by gas (lgas) and liquid phase (lliq) and (b) the liquid-phase limitation among its components: cell wall 
(lcw), cytosol (lcyt), plasmalemma and chloroplast envelope membranes (lp), and chloroplast stroma (lstr). �e l ias 
was calculated as gm/gias and the liquid-phase limitations of each components were calculated as li = gm/(gi·Sc).
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To assess the e�ects of chloroplast number and size on changes of photosynthetic limitation in each ecotypes, 
the relative limitations were linked to overall changes in A:

= + + = + +
dA
A

L L L
dg
g

l
dg
g

l
dV
V

l
(15)

s m b
s

s
s

m

m
m

cmax

cmax
b

where Ls, Lm and Lb are the reduction fractional limitation in A caused by reduction in stomatal conductance, 
mesophyll conductance and biochemistry, respectively. In the current study, the photosynthetic parameters in 
two wild type were de�ned as the references. �e gm values from Harley method and the Vcmax from A-Cc curves 
were used in calculations.

���—�ƒ�•�–�‹�–�ƒ�–�‹�˜�‡���Ž�‹�•�‹�–�ƒ�–�‹�‘�•���ƒ�•�ƒ�Ž�›�•�‹�•���‘�ˆ���•�‡�•�‘�’�Š�›�Ž�Ž���…�‘�•�†�—�…�–�ƒ�•�…�‡�ä�� To quantify the main structural limi-
tations of gm, an analogous analysis of Tosens et al.32 and Tomas et al.26 was applied. In the current study, the gas 
phase and structural components of gm (gi) were estimated from Eqn�8–11. �e gas-phase limitation of gm (lias) 
was calculated as:
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�e structural components limitation of the cellular phase conductances (li) was estimated as:
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with li representing the limitation by the cell wall, the plasmalemma, cytosol, chloroplast envelope and stroma. 
�e limitation imposed by each cellular component was scaled up with Sc.

���–�ƒ�–�‹�•�–�‹�…�ƒ�Ž���ƒ�•�ƒ�Ž�›�•�‹�•�ä�� One-way ANOVA analysis was used to test the di�erences in measured traits (in 
Tables) between estimated genotypes. All analyses were performed in R version 3.3.1 (https://cran.r-project.org).
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